
JOURNAL OF AIRCRAFT

Vol. 42, No. 1, January–February 2005

Implementation and Validation of the Spalart–Allmaras
Turbulence Model in Parallel Environment

Stéphane Séror,∗ Theodor Rubin,† and Sergey Peigin‡

Israel Aircraft Industries, 70100 Ben-Gurion Airport, Israel
and

Boris Epstein§

The Academic College of Tel-Aviv Yaffo, 60160 Tel-Aviv, Israel

The paper describes the evolution of a Navier–Stokes code developed in the Israel Aircraft Industries and its
application to complex turbulent high-Reynolds flows. The paper focuses on the following issues: 1) implementation
and validation of the Spalart–Allmaras turbulence model, 2) parallelization of the computational framework, and
3) application to the design of the wing-body fairing of a generic business jet.The improved capability of the code
allowed its use for large-scale flow simulations on a daily basis.

Introduction

A NAVIER–STOKES code, NES (Navier–Stokes Euler System),
has been developed over the past 10 years at the CFD Group

of Israel Aircraft Industries (IAI).1−3 Originally a monoblock code,
the code has evolved towards a robust multiblock code.4,5 The
code uses high-order essentially nonoscillating (ENO) scheme to
compute transonic and supersonic flows including shocks and vor-
tices, with a very low level of numerical dissipation. The need for
such a code arose from the need for high-accuracy solutions of
complex viscous flow fields about arbitrary aircraft or unmanned
aerial vehicle missile configurations for a wide range of flight
conditions.

Turbulent flows have hitherto been modeled by means of the
Baldwin–Lomax model.6 The special requirements of that model
complicate the design of a multiblock topology with point-to-point
connections at adjacent faces. Indeed, the Baldwin–Lomax model
relies on surveying the velocity or vorticity profile on a smooth
grid line, roughly orthogonal to the surface, thus being nonlocal,
which significantly increases the effort required for grid generation,
and limits the flexibility in terms of grid topology. This drawback,
in addition to the poor accuracy expected when a boundary-layer
model such as Baldwin–Lomax is applied to a massively separated
flow, underlines the importance of having a more advanced turbu-
lence model, which is also less grid dependent. This has justified the
inclusion last year in NES7,8 of a one-equation model, that is, the
Spalart–Allmaras (SA) model.9 This is a “local” model, widely used
today in the computational-fluid-dynamics (CFD) community be-
cause of its proven superior prediction compared with the Baldwin–
Lomax model and its robustness compared with two-equation
models.

In the first section we start presenting the original model and dis-
cuss the problem of obtaining a conservation form of the model for
compressible flows. Then we present the way chosen to implement

Presented as Paper 2003-3404 at the AIAA 21st Applied Aerodynamic
Conference, Orlando, FL, 22–26 June 2003; received 10 September 2003;
revision received 23 February 2004; accepted for publication 23 February
2004. Copyright c© 2004 by Israel Aircraft Industries. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0021-8669/05 $10.00 in correspondence with the CCC.

∗Aerospace Research Engineer, Engineering Division, Aerodynamic De-
partment, Group CFD; sseror@iai.co.il. Member AIAA.

†Head, CFD Group, Engineering Division, Aerodynamic Department.
‡Research Scientist, Engineering Division, Aerodynamic Department,

Group CFD.
§Consultant, Computer Science Department.

it in the multiblock/multiface/multigrid program NES. Main issues
encountered, essentially linked to the difficulties of obtaining a pos-
itive solution for the turbulent viscosity in the multigrid cycle, are
briefly addressed.

The code has been parallelized in NES10 to allow short turnaround
time. The main highlights of this work are presented. The code is
now routinely used at IAI for determining the drag of complex
aerodynamic configurations.

To validate the model implementation, we compare our results
to the ones given in the literature by Spalart–Allmaras. This is
done considering the strong shock-wave boundary-layer interac-
tion test case about the RAE2822 sharp trailing-edge airfoil at
transonic conditions. Finally, we briefly illustrate on two complex
three-dimensional geometries, a wing-pylon-pod and a wing-body
ARA-M100, some interesting features of the model in an engineer-
ing context.

In the second section of this paper, a quasi-automatic de-
sign loop process is proposed aiming at improving the shape of
the fairing of a generic business jet based on the drag analy-
sis using the NES code in combination with the Euler solver
MGAERO.11

The conjunction of the two codes has led to the definition of
an acceptable shape for the fillet at the wing-body junction of a
generic business jet at transonic cruise conditions. The strategy
was to diminish the shock intensity near the wing-body junction
by modifying the shape of the fillet in an iterative process us-
ing the Euler code. Then Navier–Stokes computations were real-
ized to assess the gains in term of drag using the SA turbulence
model. In a second step, the goal was to optimize the shape in
term of drag using the NES code only. Because the bottleneck
was the turnaround time for the mesh preparation of each new
shape, programs have been developed performing automatically the
mesh deformation and remeshing. Even when the changes in the
mesh were just localized in the fillet area, building the new mesh
manually was done in one week. Now, using the new procedure,
it takes a few minutes to generate the new mesh. In that way, a
significant number of different geometries could be analyzed by
NES computations in the design loop. The results of the design are
presented.

Implementation and Validation
Numerical Algorithm of the Code NES

In the Navier–Stokes code NES,1−3 the numerical discretization
for the convective part of the equation is based on the ENO scheme12

the viscous operator uses classical central differences, and the source
terms are discretized in a straightforward fashion. The time integra-
tion is based on the three-stage Runge–Kutta time-stepping scheme
with the Navier–Stokes local time step.

179

180 SÉROR ET AL.

Turbulence Modeling
Turbulent flows have hitherto been modeled in NES by means of

the Baldwin–Lomax model. The special requirements of that model
complicate the design of a multiblock topology with point-to-point
connections at adjacent faces. Indeed, the Baldwin–Lomax model
relies on surveying the velocity or vorticity profile on a smooth grid
line, roughly orthogonal to the surface, thus being non-local, which
significantly increases the effort required for grid generation and
limits the flexibility in terms of grid topology. This can be seen in
Fig. 1 at the junction between the pod and the pylon of a generic
wing + pod + pylon configuration. The visualization in Fig. 2 of
the lack of orthogonality between the columns and the surface re-
veals some areas with high skewness. This drawback, in addition to
the poor accuracy expected when a boundary-layer model such as
Baldwin–Lomax is applied to a massively separated flow, underlines
the importance of having a more advanced turbulence model, which
is furthermore less grid dependent. This justifies the inclusion of a
one-equation model such as that of Spalart-Allmaras,9 which is a
local model widely used today in the CFD community. Moreover
one must stress the robustness of the SA model compared with two-
equation models. The methodology adopted in implementing this
model and its parallelization in the multiblock/multiface/multigrid
program NES is summarized in the following section.

Finite Volume Formulation of the Model
There have been a number of one-equation turbulence models

developed, which use a transport equation to solve for the eddy
viscosity directly. The SA model belongs to the family of eddy-
viscosity models. This family of models is based on the assumption
that the Reynolds-stress tensor −ρui u j is related to the mean strain
rate through an apparent turbulent viscosity called eddy viscosity νt ,
ui u j = νt (∂Ūi/∂x j + ∂Ū j/∂xi). In the SA model, the eddy viscosity
is computed through a partial differential equation. In particular the
eddy viscosity is computed by an intermediate variable ν̃ through
the relation νt = ṽ fv1(χ), where χ is the ratio χ = ν̃/ν and fv1 is
a damping function. The intermediate variable ν̃ is computed by
solving a partial differential equation that can be written in compact
form as

Dν̃

Dt
= P(S, ν̃, d) − D(ν̃, d) + 1

σ

{∇ · [(ν + ν̃)∇ν̃] + cb2(∇ν̃)2
}

Fig. 1 GRIDGEN grid generation.

where P(S, ν̃, d) = cb1 S̃ν̃ is the production term of turbulence and
D(ν̃, d) = cw1 fw(ν̃/d)2 the destruction term. The difference be-
tween these terms represents the balance between the production
and destruction source terms of turbulence, resulting from turbu-
lence energy exchange from the mean motion to the fluctuation.
These terms depend primarily on the variable S, ν̃, d. S denotes the
vorticity magnitude, and d the distance to the closest wall. The last
term in the right-hand side is a diffusion term in which σ and cb2

denote the turbulent Prandtl number and a calibration constant, re-
spectively. More details and an extensive discussion about the SA
model are reported in Ref. 9.

The SA turbulent transport equation is given in the substantial
differential form, whereas the equations are required in conservation
form in NES. The first task has been to rewrite the SA equation in
a conservation form. Combining the preceding equation and the
continuity equation, the new equation in conservation form can be
written for the variable µ̃ = ρν̃:

∂µ̃

∂t
+ ∇ · (µ̃V) = P(S, µ̃, d) − D(µ̃, d)

+ 1

σ

{∇ · [(µ + µ̃)∇ν̃] + cb2ρ(∇ν̃)2
}

Fig. 2 Preprocessing—control of mesh orthogonality at the skin.

SÉROR ET AL. 181

Because the second term in the diffusion term does not easily lend
itself to a stable scheme,9 it is preferred to modify the form of the
diffusion term in the SA model, to obtain the form:

∂µ̃

∂t
+ ∇ · (µ̃V) = P(S, µ̃, d) − D(µ̃, d)

+ 1

σ

{
(1 + cb2)∇ · [(µ + µ̃)∇ν̃] − cb2(µ + µ̃)∇ · (∇ν̃)

}

where liberties have been taken with differentiation of the molecular
viscosity as recommended by Spalart–Allmaras.9

Solution Procedure Implementation
The same defect correction multigrid method for solving the

Navier–Stokes equation is used to solve the SA model. The adopted
strategy is to solve the SA equation in a weakly coupled manner.
Two options are possible (private communication with Dr. Spalart
and Dr. Allmaras):

1) Freeze the SA solution, and perform a complete multigrid
cycle for the Navier–Stokes equations. Then freeze the velocity,
and do a complete multigrid cycle for the SA equation. This would
involve building the same sort of multigrid code (e.g., restriction
and prolongation operators) already existing, but for a single partial
differential equation.

2) Incorporate both the Navier–Stokes and SA numerical proce-
dure into a given multigrid cycle, but perform decoupled relaxation
on each grid level. One advantage of this approach is that one does
not need to duplicate the multigrid cycling code. All that is needed
is to add an additional unknown/residual to the restriction and pro-
longation operators.

The second strategy has been chosen because this requires a
smaller change in the code algorithm. The decision is based on
code structure and modularity. Moreover it has been demonstrated
recently by Allmaras13 that this uncoupled approach on each level
has identical convergence to tightly coupled relaxation. The solu-
tion procedure for a flow involves the five variables (ρ, ρu, ρv, ρw,
ρe) for the Navier–Stokes equations and one µ̃ for the SA turbu-
lence closure model. The iterative procedure is represented by the
flowchart in Fig. 3.

Fig. 3 Sketch of the algorithm.

As part of the issues encountered, the convergence of the SA
equation to the steady state was very difficult to obtain at third
order (ENO = 3). Therefore, it has been assessed that it is possible
to provide good aerodynamic solution even when solving the SA
convective part at first order. It seems in view of the following results
that the accuracy in obtaining a converged solution for the eddy
viscosity has little effect on the aerodynamic field. Another issue
concerns the convergence regularity through multigrid cycle. In a
standard full approximation multigrid scheme for convergence to
the steady state, one has to compute the coarse-grid H to fine-grid
h correction interpolation:

µ̃h = µ̃0
h + I h

H

(
µ̃H − I H

h µ̃0
h

)

It has been found that this could lead to a negative update solution
for the eddy viscosity after correction even if the modified version
of the SA model proposed by Allmaras13 to admit small negative
turbulence solution µ̃ is used. The idea of Allmaras was to alter the
nonphysical transient behavior as an aid to achieve steady-state so-
lutions. In our multigrid code this was not enough, and consequently
the convergence was slow and difficult. A proposed solution, which
we found better than using a cutoff at zero, or a simple underrelax-
ation, has been to scan the µ̃ field after the coarse-to-fine correction
interpolation. Each time a negative update was found it was replaced
by the interpolation of the coarse solution to the fine grid, that is,

µ̃h = I h
H (µ̃H)

The convergence was immediately faster, and the number of nega-
tive updates that could appear through the coarse-to-fine correction
interpolation of µ̃ progressively diminished to zero in a monotonic
way during the multigrid cycles.

Parallel Implementation on PC’s Cluster
The parallelization of NES is directly linked and totally depen-

dent on the multiblock-multiface structure of the code.4,5 Hence,
the parallel implementation of the SA model followed the previous
approach of the Baldwin–Lomax NES code.14,15 The method is de-
scribed in the following, prefaced by remarks regarding the code
structure, which are pertinent to the parallelization issues.

Computations are performed on a sequence of grids, starting from
a coarse grid and refining it successively. Structured blocks are
united in multigrid levels, and a computation proceeds from the
coarsest level to the finest. Multigrid cycles are performed on each
current level, followed by interpolation of the solution to the next
finer level. In the full approximation scheme, in the fine-to-coarse
direction residuals are transferred, and new right-hand sides for the
coarse level calculations are found.

In a multiblock approach, the global domain is divided into several
smaller blocks for which i , j , k structures are more easily generated.
The solution procedure is applied to each block in some prescribed
sequence. In the present method, blocks are grouped into so-called
grids (each grid can contain from one to several blocks), and each
multigrid level consist of one or more grids. For the purpose of the
numerical method, blocks themselves may be considered as being
divided into one-dimensional segments. In the present algorithm,
the block loop is placed deep within the algorithm, in order to allow
a close simulation of a single-block calculation. At the top of the
code architecture are routines controlling the multigrid strategy and
thus the loops on levels. In the middle are routines controlling the
block loops, and at the bottom are block-structured routines that
perform operations on a given block.

From a mathematical point of view and for the numerical scheme
used here, there is no difference between a single-block and a multi-
block solver. In particular, there is no difference in the implemen-
tation of the following block face boundary conditions: 1) SUR-
FACE representing the configuration skin, 2) FARFIELD repre-
senting far-field condition, 3) SYMMETRY representing condition
at the plane of symmetry, 4) INTERNAL representing the bounds
of a local refinement covering only part of an existing block, and
5) INLET/OUTLET for inflow/outflow boundary conditions. How-
ever, there appears a difference because of the introduction of a
block connectivity boundary condition (MERGE). The basic ideas

182 SÉROR ET AL.

underlying the present development are that each block should be
able to internally identify the types of boundaries on its six sides
(SURFACE, FARFIELD, SYMMETRY, MERGE, INLET, OUT-
LET). Moreover, in the present version of the multiblock solver it is
assumed that grid lines are continuous across a block interface (ex-
act point-to-point correspondence between neighbouring blocks),
and each block face admits only one type of boundary condition. In
addition, it is assumed that a block face might abut more than one
neighbour block (multiface) in order to reduce the total number of
blocks required when performing the domain splitting operation.

Therefore each computational block is provided with informa-
tion of the types of boundaries on its six sides and is operated on
using the ENO algorithm. The boundary conditions implementation
in the multiblock solver has received special attention to obtain a
high computational efficiency. Indeed, the implementation of the
boundary conditions (including the block connectivity boundary
condition) is uncoupled from the algorithm used to update the inte-
rior points. The concept of boundary arrays and ghost cells is used to
transfer the boundary condition information to the algorithm for the
interior points. On each face corresponding to a MERGE boundary
condition, we build an extension block or boundary array having the
necessary number of cells required by the order of the ENO method
currently operated.1−3 This extension block is filled by overlapping
information from the neighbour block (see Fig. 4). The communi-
cation overhead caused by the data exchange among neighboring
blocks is negligible as it uses no complicated data management
such as connectivity lists. As a result, the code is highly suitable for
efficient parallelization on an almost plug-in basis.

For each Runge–Kutta stage the block connectivity boundary con-
dition is updated at the level of the grid, that is, after the completion
of the loop on all blocks, whereas all other boundary conditions are
updated for each Runge–Kutta stage at the level of the block itself.
In this way, it is possible to treat each block in a multiblock simula-
tion as if it were a single-block calculation (a multiblock calculation
is seen as multiple single-block calculations).

The main idea of the parallelization of the NES code is that when
two neighbors blocks are mapped into different processors the over-
lapping subroutine aiming at the exchange of information between
the blocks to enable the flux computation at the common face is par-
allelized using a message-passing algorithm based on the parallel

Fig. 4 Multiblock data management at merged faces.

Fig. 5 Load balancing of the parallel algorithm.

virtual machine (PVM) library. The separate multigrid algorithm
of the SA code is parallelized using exactly the same basic ideas.
The main part of the data transfer between the processors is associ-
ated with exchange of boundary data between neighboring blocks
mapped into different processors. The good load balance of the par-
allel code NES is achieved through two essential characteristics.
The first is the automatic splitting of the blocks before their map-
ping on the processors. This allows an approximately equal number
of grid points per processor. As a consequence, it has been nec-
essary to write an algorithm that enhances the existing automatic
boundary condition determination algorithm, to the case where the
common boundary of two adjacent blocks does not include a corner
of these blocks (crossface condition). It was previously necessary
to manually split such blocks during the mesh generation to avoid
the crossface condition, especially when handling very large grids
(more than about four million grid points). As a result, the maximum
efficiency can be achieved by an optimal automatic splitting of the
big blocks on the processors as it is shown in Fig. 5 for a typical run
on 60 processors. The second reason that explains the high efficiency
of the parallel algorithm in NES is the overlapped communication
and computation concept. This means that the send procedures are
independently executed in each blocks as soon as the data to be trans-
ferred are calculated. Such an approach reduces the losses caused
by communication because the data are transferred during the load-
balancing waiting time. Concerning more specifically the SA model,
the computation of the closest distance to the wall, in the preproces-
sor of NES, has been parallelized. This computation is done once
the blocks are mapped onto the processors that define the cluster.
Once each processor has executed this task, it sends to the master
the data in order to include the minimum distance parameter in the
file outputted for a graphical check of the preprocessor stage.

The parallel version of the multiblock multiface turbulent
Spalart–Allmaras Navier–Stokes version of NES is based on the
PVM software package. The code is implemented on multiple in-
struction multiple data (MIMD) multiprocessors cluster of HP Net-
Server LP10000R 866 Mhz. Each node has two processors, 2 GB
RAM memory, and full duplex 100 Mbps Ethernet interface. The
cluster contained 106 processors managed by MOSIX software,16

which enhances the LINUX kernel with cluster computing
capabilities.

Numerical Validation
The parallel implementation of the SA model has been validated

on the two-dimensional RAE2822 supercritical airfoil at transonic
flight conditions Re = 6.5e6, α = 2.6 deg, M = 0.75, the same test
case as in Ref. 9, where the SA model was incorporated into the code
FLO103 (Ref. 17). The fine grid possesses a minimum grid spacing
normal to the wall of 10−6 m as in Ref. 9 Runs were performed on
the medium (194 × 49) points and fine grid (387 × 97) points.

The main conclusions are as follows:
1) The SA solution convergence presents the same character-

istics as the Baldwin–Lomax one (see. Fig. 6). It is emphasized
that the reduction of the residuals by two to three orders of mag-
nitude is characteristic of the ENO approach and is sufficient to
provide convergent values of the aerodynamic coefficients in excel-
lent agreement with the experiment.

SÉROR ET AL. 183

Fig. 6 RAE2822-SA vs BL-convergence.

Fig. 7 RAE2822-SA vs BL-Cp profile.

2) The shock location is better predicted than with the previous
Baldwin–Lomax model (see Fig. 7).

3) The turbulent eddy viscosity fields about the profile are quite
different between the Spalart–Allmaras and Baldwin–Lomax (BL)
models (see Fig. 8), especially in the wake area because the two
models use different turbulent scale in that area.

4) A reattachment is obtained as in the experiment, as shown by
the skin-friction coefficient (see Fig. 9).

5) The aerodynamic coefficient are very close to those obtained by
Spalart and Allmaras in Ref. 9 (see Table 1). The slight difference
might be caused by the fully turbulent calculation at fixed angle
of attack with NES, whereas the result in Ref. 9 corresponds to a
prescribed 3% transition at fixed C L = 0.743.

Industrial Applications
A brief overview is now given of three-dimensional capability for

various cases of industrial interest that illustrate the ability of the
code to handle complex aerodynamic configurations.

Table 1 Aerodynamic coefficients

Case Cl Cd Cd f Cm

Medium BL 0.824 275 54 −0.120
Fine BL 0.823 273 57 −0.118
Medium SA 0.741 236 54 −0.101
Fine SA 0.756 238 54 −0.103
Ref. 9 0.743 238 ∂/m −0.104
Exp. α = 3.19 deg 0.743 242 ∂/m −0.106

Analysis of the results demonstrated a high level of parallel ef-
ficiency (speed up) of the algorithm. This enabled the reduction of
the execution time for industrial computations employing three mil-
lion of grid points from an estimated 20 days on the SGI ORIGIN
2000 machine (in the serial single-user mode) to about five hours on
a 100-processor cluster. In general the parallel efficiency is above
90%, provided a good load balance is achieved through an automatic
method of splitting large blocks prior to computation.15

184 SÉROR ET AL.

Fig. 8 RAE2822-SA (left) vs BL (right)-eddy viscosity field.

Fig. 9 RAE2822-SA skin-friction coefficient.

Generic Wing Pod Pylon and Wing Body
Figure 10 shows a comparison between the two turbulence mod-

els for the skin-friction distribution on the wing-pylon-pod case.
This reveals as mentioned earlier the strong dependency of the
Baldwin–Lomax model to the skewness of the grid, justifying the
need to have a more local model as the Spalart–Allmaras one. The
Spalart–Allmaras and Baldwin–Lomax models have been compared
on a three-dimensional generic wing-body configuration, ARA-
NASA M100, at Mach = 0.8027, α = 2.873. Figure 11 shows the
CL vs CD polar. The comparison between the Spalart–Allmaras

and Baldwin–Lomax models on a medium grid shows the general
improvement given by the SA model. In Figs. 12 and 13 a compar-
ison is shown between the Spalart–Allmaras and Baldwin–Lomax
models of turbulence for two different flight points. The first cor-
responds to M = 0.8027, α = 2.873 and the second to M = 0.8792,
α = 0.467. This latter case is more challenging because the shock
boundary-layer interaction is stronger. For that point it is seen that
the Spalart–Allmaras model is superior with regard to the shock
position. Concerning the first point, the NES results are similar to
those of Ref. 18.

SÉROR ET AL. 185

Fig. 10 Comparison Spalart–Allmaras vs Baldwin–Lomax—Cf on wing pod pylon.

Fig. 11 Polar curve-lift coefficient CL vs drag coefficient CD-ARA
M100 M = 0.8027, Re = 13.1 M.

Wing-Body Fairing Design
The fillet between the upper wing surface and the fuselage of a

generic business jet was modified in order to reduce drag at transonic
cruise.

Design Process
The design concept centered on diminishing the shock, which

occurred at about 2
3 of the wing-root chord on the nominal configu-

ration, as shown in Fig. 14. The CFD tools used were 1) MGAERO,
an Euler solver using Cartesian grids, and 2) NES, the Navier–
Stokes solver just described. Initially, the design effort concentrated

Fig. 12 SA vs BL at crank station-M = 0.8027, α = 2.873.

on MGAERO, using as a criterion the reduction of the local Mach
number at the wing-root shock (Fig. 14). It was verified that the
shock strength was only slightly affected by the presence of the aft-
mounted nacelle, justifying the calculation of a body-wing-winglet-
only configuration for the NES runs. At this stage, only a limited
number of NES runs were conducted, in order to obtain quantitative
drag evaluations of the more promising fillet designs.

At a later stage, the design relied totally on NES runs, driving
the modification cycles on the basis of drag evaluation directly.
New fillet shapes were chosen on a trial-and-error basis, within the
framework of the deformation modes described next. Some of the

186 SÉROR ET AL.

Fig. 13 SA vs BL at crank station-M = 0.8792, α = 0.467.

Fig. 14 MGAERO CFD computation at transonic design flight point.

initial guesses led to very unfavorable results, but within about a
week some more promising modifications began to appear. Follow-
ing up these variants with sensitivity checks for one parameter at a
time, a significantly improved configuration was found within two
more weeks.

Parameterization of the Fillet Modification
Defining the coordinate system as in Fig. 14, the modifications

were based on altering sections normal to the fuselage axis, that is,
at X constant stations.

The bounds of the modified region were specified as follows: 1) X
station, representing the upstream bound; 2) X station, representing
the downstream bound; 3) curve projected on configuration skin,
representing the lower bound (on the wing-root upper surface); and
4) curve projected on configuration skin, representing the upper
bound (on the side of the fuselage).

Various modes of deformation were constructed for modifying
individual X constant sections (see Figs. 15a–15d: 1) BULGE1, a
straight line stemming from lower bound, joining a conic to meet
skin surface tangentially at upper bound (Fig. 15a); 2) BULGE2,
two conics joining tangentially and meeting skin surfaces tangen-
tially at lower and upper bounds (Fig. 15b); and 3) DENT1, nor-
mal deformation (Fig. 15c) given by a modified cosine function
(Fig. 15d) tailing off smoothly to zero at the lower and upper
bounds.

Parameters given for each deformation are noted: 1) for which X
station the section received the maximum effect of the deformation,
and 2) the amplitude of this maximum deformation.

At other sections between the upstream and downstream bounds,
a blending of original and deformed sections is formed, so that the
deformed geometry merges smoothly into the original geometry at
these bounds. The degree of blending is controlled by a modified
cosine function (Fig. 15d).

Fig. 15a BULGE1 mode.

Fig. 15b BULGE2 mode.

Fig. 15c DENT1 mode.

Fig. 15d Modified cosine.

An additional parameter is noted: 3) the location at which the
maximum deformation on a section is achieved.

Summarizing, if the preceding four boundaries are regarded
as describing a roughly rectangular region of modification
for a particular deformation mode, then the location of this
mode’s maximum change is defined lengthwise and heightwise
by parameters 1) and 3) respectively, with amplitude defined
by 2).

SÉROR ET AL. 187

Fig. 16 Fillet patches modified automatically.

Fig. 17 NES SPALART-ALLMARAS CODE: Nominal fillet.

Fig. 18 NES SPALART-ALLMARAS CODE: Improved Filled (DENT 50mm).

Combinations of the preceding deformation modes were permit-
ted (each with their own upstream and downstream bounds and
station of maximum effect). However, it was soon evident that the
modification which proved most beneficial was a single application
of the DENT1 mode.

Geometric Tools
Three programs implemented the preceding deformations on the

original geometry (Fig. 16):
1) M1 creates a modified surface geometry input for MGAERO,

given the original surface geometry input and the deformation pa-
rameter file.

2) M2 creates modified surface patches for NES, based on orig-
inal surface patches covering the fillet region, and the deformation
parameter file.

3) M3 modifies the multiblock grid input for NES, based on the
original grid input, and the surface patches from M2.

188 SÉROR ET AL.

Fig. 19 CL versus CD Polars-Impact of design on drag performance.

Results of Fillet Design
Figures 17 and 18 show the Cp distribution superimposed with

the velocity vectors close to the wall respectively for the nominal
fillet and for the improved one (50 mm DENT). The intensity of the
root vortex at the trailing edge of the junction wing body has been
strongly lowered on the improved fairing.

CL vs CD polars are shown in Fig. 19, which indicated drag re-
ductions of about 10 counts, at transonic cruise conditions. Various
polars are shown for different suggested fillets, which have vary-
ing implications on the accompanying structural changes. The final
choice of the optimal fillet rests on a tradeoff between aerodynamic
performance and manufacturing feasibility.

Conclusions
The Spalart–Allmaras one-equation turbulence closure model im-

plemented and validated in the cell-centered finite volume solver
Navier–stokes Euler System (NES) has been parallelized. This
model improves significantly the shock position compared with the
Baldwin–Lomax model, and hence leads to an improved prediction
of the lift and drag. The parallel capability of the code enabled the
handling of runs of complex turbulent flows on realistic geometries
on a daily basis. In that context the design of the wing-body fairing
of a generic business jet has been implemented, based on the NES
code.

Acknowledgments
We gratefully acknowledge the support of S. Gali of the Direc-

torate for Defence Research and Development (MAFAT) in enabling
this research.

References
1Epstein, B., Jacobs, A., and Nachshon, A., “Aerodynamically Accurate

Three-Dimensional Navier–Stokes Method,” AIAA Journal, Vol. 35, No. 6,
1997, pp. 1089, 1090.

2Epstein, B., and Nachson, A., “An ENO Navier–Stokes Applied to 2D
Subsonic Transonic and Hypersonic Aerodynamic Flows,” AIAA Paper 94-
0303, Jan. 1994.

3Epstein, B., Averbuch, A., and Yavneh, I., “An Accurate ENO Driven
Multigrid Method Applied to 3D Turbulent Transonic Flows,” Journal of
Computational Physics, Vol. 168, No. 2, 2001, pp. 316–338.

4Séror, S., Rubin, T., and Epstein, B., “Construction of a Multiblock

3D Full Navier–Stokes Code for Practical Aerodynamic Computations,”
Proceedings of the 41st Israel Annual Conference on Aerospace Sciences,
Vol. 1, Technion Press, Haifa, Israel, 2001, pp. 231–241.

5Epstein, B., Rubin, T., and Séror, S., “An Accurate ENO Driven Navier–
Stokes Solver for Complex Aerodynamic Configurations,” AIAA Journal,
Vol. 41, No. 4, 2003, pp. 582–594.

6Baldwin, B. S., and Lomax, H., “Thin Layer Approximation and Alge-
braic Model for Separated Turbulent Flows,” AIAA Paper 78-257, 1978.

7Séror, S., Rubin, T., Epstein, B., and Arad, E., “Recent Enhancement of
the 3D Navier–Stokes Code NES,” Proceedings of the 42th Israel Annual
Conference on Aerospace Sciences, Technion Press, Haifa, Israel, 2002.

8Séror, S., Rubin, T., Peigin, S., and Epstein, B., “Development of an
Accurate Multiblock Multiface Parallel 3D ENO Driven Multigrid Cycling
Navier–Stokes Code NES with the Spalart-Allmaras Model for Complex
Aerodynamic Configurations,” Proceedings of the West East High Speed
Flow Fields Conference, Marseilles, France, CIMNE Press, Barcelona, 22–
24 April 2002.

9Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence Model
for Aerodynamic Flows,” AIAA Paper 92-0439, Jan. 1992.

10Séror, S., “Parallelization of the SA Model in NES—Final Status,”
Internal Document Israel Aircraft Industries, Lod. Israel, April 2002.

11Epstein, B., Luntz, A., and Nachshon, A., “Multigrid Euler Solver About
Arbitrary Aircraft Configurations with Cartesian Grids and Local Refine-
ments,” AIAA Paper 89-1960, June 1989.

12Harten, A., Engquist, B., Osher, S., and Chakravarthy, S., “Uniformly
High Order Accurate Non-Oscillatory Schemes. 1,” Journal of Computa-
tional Physics, Vol. 71, 1987, pp. 231–303.

13Allmaras, S. R., “Multigrid for the 2D Compressible Navier–Stokes
Equations,” Proceedings of the 14th Computational Fluid Dynamics Con-
ference, Norfolk, VA, 28 June–1 July 1999.

14Peigin, S., Epstein, B., Rubin, T., and Séror, S., “Parallel Multiblock
Full Navier–Stokes Code NES: 5 Million Points Complete Aircraft Flow
Simulation,” Proceedings of 42th Israel Annual Conference on Aerospace
Sciences, Technion Press, Haifa, Israel, 2002.

15Peigin, S., Epstein, B., Rubin, T., and Séror, S., “Parallel Large Scale
High Accuracy Navier–Stokes Computations on Distributed Memory Clus-
ters,” The Journal of Supercomputing, Vol. 27, No. 1, 2004, pp. 49–68.

16Barak, A., Guday, S., and Wheeler, R., “The MOSIX Distributed Op-
erating System, Load Balancing for UNIX,” Lecture Notes in Computer
Science, Vol. 672, Springer-Verlag, 1993.

17Martinelli, L., and Jameson, A., “Validation of a Multigrid Method for
the Reynolds Averaged Equations,” AIAA Paper 88-0414, Jan. 1988.

18Marconi, F., Siclari, M., Carpenter, G., and Chow, R., “Comparison of
TLNS3D Computations with Test Data for a Transport Wing/Simple Body
Configuration,” AIAA Paper 94-2237, June 1994.

